التصنيف: اختبار مقارن

تحليل تكلفة بنية وحدات GPU: السحابة مقابل البنية المحلية

تحليل مالي ومعماري يوضّح متى تتفوّق عناقيد GPU المحلية على السحابة من حيث التكلفة وسيادة البيانات معًا.

Executive Summary

This analysis compares the total cost of ownership (TCO) for GPU infrastructure between cloud-based and on-premise deployments. Our findings indicate that for sustained AI workloads, on-premise deployment can deliver 40–60% cost savings over a 3–5 year period.

Methodology

Time horizons of 3 and 5 years
Training, inference, and mixed workloads
NVIDIA A100 / H100–class GPUs
Multiple utilisation scenarios (25–100%)

Cloud Cost Analysis

Instance costs on AWS, Azure, GCP
Storage and egress charges
Support and premium SLAs

On-Premise Cost Analysis

Hardware acquisition (e.g. DGX A100/H100)
Power, cooling, and space
Operations and maintenance
Depreciation and lifecycle

Key Findings

Break-even typically around 40–50% utilisation over 3 years
At high utilisation, on-premise can save hundreds of thousands of dollars
Data sovereignty and predictability are major non-financial advantages

Recommendations

Choose **on-prem** when:

Workloads are predictable and sustained
Data sovereignty is required
Long-term AI strategy is defined

Choose **cloud** when:

Workloads are highly variable
Projects are experimental or short-term
Rapid global scaling is required

Conclusion

For enterprises with sustained AI workloads and sovereignty requirements, on-premise GPU infrastructure often delivers superior economics and control compared to public cloud–only strategies.

مشاركة هذا المصدر
GoAI